4/H-16 (iv) (Syllabus-2017)

E 2024 Segments

(May/June)

ECONOMICS

(Honours)

(Mathematics for Economists)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

1. (a) State and prove the distributive laws of set operations by using the following sets:

 $A = \{b, c, e, f\}; B = \{a, c, d, g\}; C = \{a, b, d, e\}$

(b) Find the Cartesian products of the following sets;

$$A = \{2, 5, 7\}; B = \{4, 6\}$$

- (c) Write notes on any three of the following:
 - (i) Slope of a function
 - (ii) Homogeneous function
 - (iii) Power set
 - (iv) Venn diagram
- 2. (a) Find the equation of a straight line which passes through the points (3, -2) and (-1, 4). Also write down the gradient of the line.
 - (b) The demand and supply functions are

$$Q_s = 2P - 4$$
, $Q_d = 56 - 3P$

Determine the equilibrium price and quantity. 3+2=5

- (c) Determine the degree of homogeneity of the following functions: 2+3=5
 - (i) $f(L, K) = AL^aK^{1-a}$
 - (ii) $f(x, y) = [ax^{-2} + by^{-2}]^{-\frac{1}{2}}$

UNIT-II

3. (a) If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & -1 & 3 \\ 0 & 4 & 1 \end{bmatrix}$$
, find $A^2 - 6A + 8I$.

(b) Find
$$C_1$$
, C_2 , C_3 if $\begin{bmatrix} 7 \\ 3 \\ 5 \end{bmatrix} - \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 2 \end{bmatrix}$.

(c) If

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \\ 1 & 0 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 1 \\ 3 & -1 & 2 \\ -2 & 3 & 0 \end{bmatrix}$$

prove that $(AB)^T = B^T \cdot A^T$.

4. (a) Solve the following equations by matrix inversion method:

$$x+y-z=4$$
$$3x-4z=5$$
$$4x-5y=2$$

- (b) Write notes on any two of the following: $3\times2=6$
 - (i) Transpose of a matrix
 - (ii) Inverse of a matrix
 - (iii) Cramer's rule
 - (iv) Leontief input-output model

24D/1200

(Continued)

(Turn Over)

3

6

9

UNIT-III

- 5. (a) Explain the concepts of limit and continuity with suitable examples. 2+2=4
 - (b) Evaluate the following limits (any two): 3×2=6

(i) Lt
$$\frac{e^x-1}{x}$$

(ii) Lt
$$_{x\to 0} \frac{(x+h)^3 - h^3}{3x}$$

(iii) Lt
$$_{x\to 0}$$
 $\frac{\sqrt{a+x}-\sqrt{a-x}}{3x}$

(c) Find the values of x for which the following functions are discontinuous:
2+2+1=5

(i)
$$f(x) = \frac{3x+7}{x^2-5x+6}$$

(ii)
$$f(x) = \frac{x^2 - 6x + 1}{3x^2 - 12}$$

(iii)
$$f(x) = \frac{4x-5}{3x-8}$$

6. (a) Find $\frac{dy}{dx}$ of the following functions (any *three*): $3\times3=9$

(i)
$$x^3 - 3x^2y + y^3 = 10$$

(ii)
$$y = x^{-6}(x^2 - 4x + 5)$$

(iii)
$$y = (x+1)^x$$

(iv)
$$y = e^{x^3 - \sqrt{5-x} + 1}$$

(v)
$$f(x) = \frac{ax^2 - bx + c}{x^{-3}}$$

(b) Find the second-order partial derivatives of the following function: $z = 7x^3u^2 - 5x^2u^3$

(c) If
$$u = \sqrt{x^2 + y^2}$$
, find du where du is the total differential of u .

UNIT-IV

- 7. (a) Discuss the various steps involved in finding the maxima/minima of the function y = f(x).
 - (b) The demand function and cost function of a firm are q = 10 P and $C = \frac{q^2}{4}$ respectively. Find the level of output (q) where profit is maximum. Also write down the value of maximum profit. 4+1

3

3

5

(c) The total cost function of a firm is
$$C = 34q - 9q^2 + q^3$$
. At what level of output (q), marginal cost is minimum? Also write down the minimum value of marginal cost. $4+1=5$

8. (a) Determine the maximum/minimum values of the following function: 5
$$y = \frac{1}{3}x^3 - 3x^2 + 8x + 10$$

(b) The demand function is given by
$$q = 200 - P^2$$
. Find the price elasticity of demand if the price was 75 . Also interpret the result. $3+1=4$

(c) The total revenue function of a firm is given by
$$R = q^3 - 2q^2 + 6q$$
. Obtain the slopes of AR-curve and MR-curve when $q = 3$. Also find the value of output (q) where the two slopes are equal. $2+2+2=6$

Discuss to tar on stags to wed to finding the beat to

9. (a) Evaluate the following integrals (any three):
$$3\times 3=9$$

(i)
$$\int (x+1)^2 dx$$

(ii)
$$\int \frac{4x-5}{2x^2-5x+1} dx$$

(iii)
$$\int_{1}^{2} (x^3 + 5)^2 3x^2 dx$$
(iv)
$$\int_{1}^{8} 8e^{2x+3} dx$$

(b) The demand function is
$$P = \sqrt{9-x}$$
 and

consumer's surplus. 6

10. (a) Evaluate
$$\int_{-2}^{2} (x^2 - 4x + 5) dx$$
. 3

the units of demand is 5. Find the

(b) In a competitive market, the equilibrium price is 40 and the supply function is
$$P = 0.2Q + 20$$
. Find the producer surplus.

(c) Write notes on any two of the following:
$$3\times2=6$$

3

6